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Equations of relaxation filtration of homogeneous fluids in cracked-porous media are derived. From
a general system of equations, systems of "truncated" and simplified equations of filtration are ob-
tained, for which the laws of smearing of pressure jumps are studied and the ranges of convergence
of their solutions to the solution of the general system of equations are established.

Theoretical concepts of filtration of homogeneous fluids in cracked-porous media (CPMs) were given
in [1, 2]. In conformity with this theory, cracked-porous media are represented as two coexistent interpene-
trating continua (media) which have contrasting capacitive and filtration characteristics. The first medium rep-
resents a system of cracks, while the second one represents porous blocks. The equations of motion and mass
conservation are written for each medium separately, i.e., two penetrabilities, two porosities, two filtration
rates, and two pressures are introduced at each point. The flow of the fluid from one medium to the other is
taken into account by introducing a source-sink function into the equations of mass conservation. It is as-
sumed that the bed is homogeneous and isotropic and the flow in both media occurs within the limits of
validity of Darcy’s law. The fluid is weakly compressible; both media are elastic; we have fluid exchange
between the cracks and the porous blocks, and the mass of the fluid flowing from the blocks into the cracks
obeys the relation

q = α0 
ρ0

µ
 (p2 − p1) , (1)

where α0 is the dimensionless coefficient that depends on the geometric characteristics of the porous blocks
and ρ0 is the density at the initial pressure p0. On these premises the equations of filtration take the following
form:

χ∆p1 = ε1 
∂p1

∂t
 − 

p2 − p1

τ
 ,   χε2∆p2 = 

∂p2

∂t
 + 

p2 − p1

τ
 , (2)

where

χ = 
k1

µβ2
∗  ;   ε1 = 

β1
∗

β2
∗  ;   ε2 = 

k2

k1

 ;   τ = 
µβ2

∗

α0

 ;

βi
∗  = βmi + m0iβfl ;  ρ = ρ0 [1 + βfl (pi − p0)] ;  mi = m0i + βmi (pi − p0) ;  vi = − 

ki

µ
 ∇ pi ,   i = 1, 2 .
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From the general model (2), under the conditions that the cracked porosity m1 and the compressibility
βm1 are low compared to these parameters of the porous blocks, whereas the penetrability of the porous
blocks is low compared to that of the cracks, i.e., m1 << m2, βm1 << βm2, and k2 << k1, a simplified system of
equations is obtained:

χ∆p1 + 
p2 − p1

τ
 = 0 ,   

∂p2

∂t
 + 

p2 − p1

τ
 = 0 . (3)

In [3], J. E. Warren and P. J. Root took into account the compressibility of cracks but neglected the
motion of the fluid in porous blocks. Under these assumptions, Eq. (2) yields the system of equations 

χ∆p1 = ε1 
∂p1

∂t
 − 

p2 − p1

τ
 ,   

∂p2

∂t
 + 

p2 − p1

τ
 = 0 , (4)

which in certain publications is called "truncated."
The model described in [1, 2] is widely used in analyzing the processes of exploitation of oil deposits

with cracked and cracked-porous collectors [4–6].
An analysis of the models of fluid motion in cracked-porous media can be found in [4, 7]. Formula-

tion of the problems for the simplified and "truncated" systems of equations (3) and (4) has a number of
special features information on which can be found in [7, 8]. Many researchers, in particular, Z. X. Chen [7],
point to the fact that the simplified and "truncated" equations have some defects which must be taken into
account in formulating the problems.

In the models presented, the fluid is considered to be viscous. However, as is well known, in many
deposits with cracked-porous collectors oils possess non-Newtonian properties [9, 10] which during the mo-
tion of such fluids in porous and cracked-porous media can be manifested in the form of various anomalous
effects. These can include, apart from the known nonlinearity of the filtration laws and manifestation of a
limiting pressure gradient, a nonequilibrium coupling between the filtration rate and the pressure gradient. At
the present time, an unambiguous coupling between the nonequilibrium condition of the filtration law and
nonequilibrium rheological properties of the fluid has not been established. The investigations performed in
[11–13] have shown that the macroscopic properties of cracked-porous media during the motion of viscous
fluids in them depend on the characteristic dimensions of the pores and cracks and on the macroscopic me-
dium itself. For certain relations of these scales the macroscopic medium manifests memory effects, which
can be considered as a more general phenomenon than retardation effects in the model of [1, 2] caused by
the mass exchange between the cracks and the porous blocks. This shows once more that relaxation phenom-
ena in the filtration laws can be caused by a wider range of reasons than only by the nonequilibrium relaxa-
tion rheological properties of the fluid and the skeleton of the porous medium (or of the cracked-porous
medium). The macroscopic law of filtration for an Oldroyd linear viscoelastic fluid in a porous medium is
deduced in [14]. The results of this work indicate that the viscoelastic properties of the fluid can lead to
various anomalous phenomena in the filtration law, in particular, to the enhancement of the relaxation prop-
erties of the filtration velocity and the pressure gradient. It is also shown that the nature of filtration is much
more complicated than is given in [15–17] for the case of hypothetical models which establish the nonequili-
brium coupling between the filtration rate and the pressure gradient.

Based on the phenomenological approach [1, 2], in the present work we derive the general equations
of relaxation filtration in cracked-porous media, investigate the behavior of simplified and "truncated" relaxa-
tion systems of equations obtained from the general system, and estimate the ranges of convergence of their
solutions to the solution of the general system.
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We consider that the filtration laws in the cracks and the porous blocks have relaxation properties,
with the characteristic relaxation times for them being different. Here the above-noted dependence of the fil-
tration properties on the characteristic dimensions of the media is taken into account [18].

First, we consider the filtration law only with the pressure relaxation

  vi = − 
ki

µ
 



1 + λi 

∂
∂t




 grad pi ,   i = 1, 2 . (5)

The equations of continuity in the phases are taken in the form [2]

− div (ρvi) = 
∂ (mi ρ)

∂t
 & q ,   i = 1, 2 . (6)

where q is the mass-exchange intensity between the phases; a minus sign before the quantity q corresponds
to i = 1, while a plus sign corresponds to i = 2.

Using Eqs. (5) and (6), we obtain




1 + λi 

∂
∂t




 div 





ρ (pi) k (pi)
µ (pi)

 grad pi




 = 

∂
∂t

 [ρ (pi) m (pi)] & q ,   i = 1, 2 , (7)

where q can be given in the form of Eq. (1).
Suppose that the fluid is compressible only weakly and volumetric relaxation effects are absent, i.e.,

ρ = ρ0[1 + βfl(pi − p0)]; both media are elastic, i.e., mi = m0i + βmi(pi − p0), i = 1, 2; the permeabilities are
constant, ki = const and µ = const too. On these premises, from Eq. (7) we can come to the system

ki

µ
 



1 + λi 

∂
∂t




 ∇ 2pi = βi

∗  
∂pi

∂t
 � 

α0

µ
 (p2 − p1) , (8)

where βi
∗  = βmi + m0iβfl, i = 1, 2.
Using the notation introduced in Eq. (2), we write system (8) in the form

χ 



1 + λ1 

∂
∂t




 ∇ 2p1 = ε1 

∂p1

∂t
 − 

p2 − p1

τ
 ,   χε2 




1 + λ2 

∂
∂t




 ∇ 2p2 = 

∂p2

∂t
 + 

p2 − p1

τ
 . (9)

On the assumption that m1 << m2 and k2 << k1, from Eq. (9) it is possible to obtain the following
"truncated" system:

χ 



1 + λ1 

∂
∂t




 ∇ 2p1 = ε1 

∂p1

∂t
 − 

p2 − p1

τ
 ,   

∂p2

∂t
 + 

p2 − p1

τ
 = 0 , (10)

which holds only for λ2 
∂
∂t

 D E, where E is the unit operator. For λ2 
∂
∂t

 >> E, but when ε2λ2 
∂
∂t

 is the signifi-

cant operator, the second equation of system (10) has the form

χε2λ2 
∂
∂t

 ∇ 2p2 = 
∂p2

∂t
 + 

p2 − p1

τ
 . (11)

Equations (10) will be called the Warren–Root relaxation system of equations.
As is evident from Eqs. (10) and (11), the influence of the relaxation effects (occurring in the porous

blocks) in weakly nonstationary processes of flow is insignificant.
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In a similar manner, we can derive equations in the case where the filtration law is prescribed in
general form, i.e., in the form of hereditary integrals [9]

vi = − 
ki

µ
 






grad pi + ∫ 

0

t

Φi (t − ξ) grad pidξ







or

grad pi = − 
µ
ki

 






vi + ∫ 

0

t

Fi (t − ξ) vi dξ






 ,   i = 1, 2 .

The functions Φi(t) and Fi(t) will be called the influence functions of the pressure (the pressure gra-
dient) and the filtration rate, respectively. The filtration laws can also be written in the form of the integral
rheological equations of the viscoelasticity theory [19] as

vi (t) = − 
ki

µ
 ∫ 
−∞

t

ϕi (t − ξ) 
∂
∂ξ

 ∇ pi (r, ξ) dξ
(12)

or

∇ pi (r, t) = − 
µ
ki

  ∫ 
−∞

t

fi (t − ξ) 
∂
∂ξ

 vi (ξ) dξ ,   i = 1, 2 ,

and instead of Eq. (9) as

χ  ∫ 
−∞

t

ϕ1 (t − ξ) 
∂
∂ξ

  ∇ 2p1 (r, ξ) dξ = ε1 
∂p1

∂t
 − 

p2 − p1

τ
 ,

χε2  ∫ 
−∞

t

ϕ2 (t − ξ) 
∂
∂ξ

 ∇ 2p2 (r, ξ) dξ = 
∂p2

∂t
 + 

p2 − p1

τ
 .

(13)

From Eq. (13) for

ϕi = 



1 + 

λi − θi

θi
 exp 




− 

t

θi








 h (t) ,   i = 1, 2 , (14)

(where h(t) is the Heaviside function) it is possible to derive the filtration equations that correspond to the
law:

vi + θi 
∂vi

∂t
 = − 

ki

µ
 



1 + λi 

∂
∂t




 grad pi ,   i = 1, 2 .

In particular, substitution of Eq. (14) into Eq. (13) and passage to the limit for θi → 0, i = 1, 2, give
Eq. (9).
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From Eq. (13) we can obtain a "truncated" system of the type (10), whose working range is estimated
by taking into account the significance of the integral operator

L (•)  = ∫ 
−∞

t

ϕ2 (t − ξ) (•)  dξ .

It should also be noted that on condition that β1
∗  << β2

∗ , the "truncated" system of equations (10) can
yield the simplified system of equations

χ 



1 + λ1 

∂
∂t




 ∇ 2p1 + 

p2 − p1

τ
 = 0 ,   

∂p2

∂t
 + 

p2 − p1

τ
 = 0 . (15)

Under the conditions that lead to Eq. (11), the second equation of the simplified system (15) is also
replaced by Eq. (11).

As is shown in [20], the initial distributions of pi, i = 1, 2, cannot be assigned arbitrarily. It is estab-
lished that the discontinuities p1 and ∂p1

 ⁄ ∂x are smeared instantly, i.e.,

[p1] = 0 ,   




∂p1

∂x




 = 0 , (16)

whereas the discontinuities p2 and ∂p2
 ⁄ dx are smeared exponentially, i.e.,

[p2] = [p2]0 exp 



− 

t

τ



 ,   





∂p2

∂x




 = 




∂p2

∂x



 0

 exp 



− 

t

τ



 , (17)

where [f] is the discontinuity of the function f and [p2]0 and 




∂p2

∂x



 0

 are the initial values of the discontinuities

of p2 and 
∂p2

∂x
.

Let us investigate the smearing behavior of the solution jumps of the relaxation equations of filtration
in cracked-porous media (Eqs. (10) and (15)). To do this, we integrate the first equation of system (15) over
the region Gx




−l ≤ x ≤ l

χτ 



1 + λ1 

∂
∂t




 
∂p1

∂x



 −l

l

 + ∫ 
−l

l

(p2 − p1) dx = 0 ,

whence




1 + λ1 

∂
∂t




 




∂p1

∂x




 = 0 . (18)

Multiplying the same equation by x and then integrating it over the region Gx, we obtain




1 + λ1 

∂
∂t




 [p1] = 0 . (19)
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Equations (18) and (19) yield

[p1] = [p1]0 exp 



− 

t

λ1




 ,   





∂p1

∂x




 = 




∂p1

∂x



 0

 exp 



− 

t

λ1




 . (20)

where [p1]0 and 




∂p1

∂x



 0

 are the initial values of p1 and ∂p1
 ⁄ dx, respectively.

Eliminating p2 from Eq. (15), we find

∂p1

∂t
 = χ 




1 + (τ + λ1) 

∂

∂t
 + τλ1 

∂2

∂t2



 ∆p1 .

Eliminating p1 from Eq. (15), we obtain quite an identical equation relative to p2:

∂p2

∂t
 = χ 




1 + (τ + λ1) 

∂

∂t
 + τλ1 

∂2

∂t2



 ∆p2 .

(21)

To determine the smearing behavior of the jumps p2 and ∂p2
 ⁄ ∂x, we integrate Eq. (21) over the re-

gion Gx, which gives

τλ1 
∂2P

∂t2
 + (τ + λ1) 

∂P

∂t
 + P = 0 ,   P = 





∂p2

∂x




 . (22)

Multiplying Eq. (21) by x and integrating it again over the region Gx, we obtain the following equa-
tion, identical to Eq. (22), relative to [p2]:

τλ1 
∂2 [p2]

∂t2
 + (τ + λ1) 

∂ [p2]

∂t
 + [p2] = 0 . (23)

In order to investigate the behavior of solutions (23), we consider the following cases.
(1) Let λ1 ≠ τ. Then

[p2] = a exp 

− 

t
τ



 + b exp 


− 

t
λ1




 , (24)

where

a = − τ (λ1 − τ)−1 (λ1 [p2]0
′  + [p2]0) ,   b = λ1 (λ1 − τ)−1 (τ [p2]0

′  + [p2]0) ,   [p2]0
′  = 

∂ [p2]

∂t



 t = 0

 .

(2) Let λ1 = τ. Then

[p2] = 



[p2]0 + 





[p2]0

τ
 + [p2]0

′ 


 t



 exp 




− 

t

τ



 . (25)

Solution (22) has the same form, as Eqs. (24) and (25), only instead of [p2]0 and [p2]0
′  it is necessary

to use 




∂p2

∂x



 0

  and   




∂p2

∂x



 0

′

   








∂p2

∂x



 0

′

 = 
∂
∂t





∂p2

∂x







 t=0




 , respectively.
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Similarly, we can show that the smearing behavior of the solution jumps in the system of equations
(10) is the same as in Eqs. (20), (24), and (25).

The solutions obtained indicate that in the case of relaxation filtration the jumps p1 and ∂p1
 ⁄ ∂x are

not attenuated instantly as this takes place in a classical model of filtration in cracked-porous media [20]. The
smearing of the jumps occurs in conformity with the exponential law (20), where the characteristic smearing
time is determined by the relaxation time of the pressure gradient, i.e., by λ1. In the porous blocks, the
smearing behavior of the solution jumps is also exponential. However, in contrast to the classical case, it is
determined by the additive influence of two characteristic times of the process, i.e., by λ1 and τ, while the
scales of attenuations are determined by the values of λ1 and τ. For λ1 >> τ the more prolonged attenuation
of the jumps is determined by the value of λ1. Consequently, the attenuation of the jumps caused by the mass
exchange between the porous blocks and cracks is completed relatively rapidly. The most distinctive behavior
of smearing of the jumps is observed in the case λ1 = τ. Here the jumps p2 and ∂p2

 ⁄ ∂x are smeared in
conformity with the additive addition of purely exponential and power-exponential laws. In this case, for defi-
nite t = t∗  > 0 the smearing of the jumps p2 and ∂p2

 ⁄ ∂x can acquire a nonmonotonic character with one maxi-
mum (or minimum). Suppose that [p2]0 = const and [p2]0

′  = const. Then

t∗  = 
[p2]0 τ

2

[p2]0 + τ [p2]0
′  .

When λ1 = 0, from Eqs. (24) and (25) we obtain Eqs. (16) and (17), respectively.
Thus, the smearing of the solution jumps of the simplified and "truncated" systems of relaxation fil-

tration equations in cracked-porous media is determined not only by the value of τ but also by λ1. In certain
situations, the nonmonotonic attenuation of the jumps of pressure and of its first derivative with respect to x
in the porous blocks is possible. The attenuation of the jumps will have a unimodal character.

Now we estimate numerically the working ranges of the "truncated" and simplified systems of equa-
tions (10) and (15). For this, we consider the following model problem. Suppose that in a plane, semiinfinite,
and homogeneous cracked-porous medium with initial pressure p0 at the point x = 0 the pressure pm = const
is created. In accordance with this formulation, the initial and boundary conditions of the problem are written
as follows:

pi (0, x) = p0 ,   0 ≤ x < ∞ ;   pi (t, 0) = pm ;   pi (t, ∞) = p0 ,   i = 1, 2 . (26)

To solve this problem, we used the finite-difference method [21].
To approximate the equations in the region D{(x, t), 0 ≤ x < ∞, 0 ≤ t ≤ T}, we introduce a grid ωθh =

{(xk, tj), k = 0, 1, 2, ..., j = 0, 1, 2, ..., J, xk = kh, tj = jθ, θ = T ⁄ J}, where T and J = const and h and θ are
the grid steps for x and t, respectively. We introduce the notation P1k

j  = p1(tj, xk) and P2k
j  = p2(tj, xk).

System (9) is approximated by the implicit two-parameter finite-difference scheme

χ 



σ1ΛP1k

j+1 + (1 − σ1) ΛP1k
j  + 

λ1

θ
 (ΛP1k

j+1 − ΛP1k
j)



 = ε1 

P1k
j+1 − P1k

j

θ
 − 

P2k
j+1 − P1k

j+1

τ
 ,

χε2 



σ2ΛP2k

j+1 + (1 − σ2) ΛP2k
j  + 

λ12

θ
 (ΛP2k

j+1 − ΛP2k
j )



 = 

P2k
j+1 − P2k

j

θ
 + 

P2k
j+1 − P1k

j+1

τ
 ,

(27)

where
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ΛP1k
j  = 

1

h2 (P1k−1
j  − 2P1k

j  + P1k+1
j ) ;   ΛP2k

j  = 
1

h2 (P2k−1
j  − 2P2k

j  + P2k+1
j ) ;

σ1 and σ2 are the real parameters.
For definiteness, we consider purely implicit schemes: σ1 = σ2 = 1. Then Eq. (27) takes the form

χ 



ΛP1k

j+1 + 
λ1

θ
 (ΛP1k

j+1 − ΛP1k
j )



 = ε1 

P1k
j+1 − P1k

j

θ
 − 

P2k
j+1 − P1k

j+1

τ
 ,

χε2 



ΛP2k

j+1 + 
λ2

θ
 (ΛP2k

j+1 − ΛP2k
j )



 = 

P2k
j+1 − P2k

j

θ
 + 

P2k
j+1 − P1k

j+1

τ
 ,

(28)

System (28) gives the following difference equations:

ak
1P1k−1

j+1  + ck
1P1k

j+1 + bk
1P1k+1

j+1  + dk
1P2k

j+1 = − fk
1 ,   ak

2P2k−1
j+1 + ck

2P2k
j+1 + bk

2P2k+1
j+1 + dk

2P1k
j+1 = − fk

2 , (29)

where the coefficients ak
1, ak

2, bk
1, bk

2, ck
1, ck

2, fk
1, and fk

2 are expressed in terms of the known data of the prob-
lem.

The system of difference equations (29) is solved by the sweep method.
The "truncated" and simplified equations (10) and (15) are approximated as particular cases of gen-

eral scheme (27).
Based on the numerical solution of the problem, we performed calculations for a certain set of initial

values of the parameters mi, ki, and βmi, i = 1, 2.
Figure 1 presents one variant of change in the absolute errors

δ1n (k, j) = ( P1k
j )1 − (P1k

j )n  ,   δ2n (k, j) = ( P2k
j )1 − (P2k

j )n  ,

where n = 2, 3, 4, and 5.
The subscripts 1 and n correspond to the solutions of the systems of equations (9) (subscript 1), (10)

(n = 2), and (15) (n = 3), and also to those of the corresponding systems of equations 

χ 



1 + λ1 

∂
∂t




 ∇ 2p1 = ε1 

∂p1

∂t
 − 

p2 − p1

τ
 ,   χε2λ2 

∂
∂t

 ∇ 2p2 = 
∂p2

∂t
 + 

p2 − p1

τ
     (n = 4) (30)

and

χ 



1 + λ1 

∂
∂t




 ∇ 2p1 + 

p2 − p1

τ
 = 0 ,   χε2λ2 

∂
∂t

 ∇ 2p2 = 
∂p2

∂t
 + 

p2 − p1

τ
     (n = 5) . (31)

The analysis of all the variants of calculations has shown that in the case where βm1 and βm2 are
comparable, the values of δ13 and δ23 are substantially larger than those of δ12 and δ22. This indicates that the
convergence of the solutions of the system of equations (15) does not satisfy the solutions of Eqs. (9). The
small values of δ12 and δ22 show a good convergence between solutions of (9) and (10). At the points x = 0
and x = L, where L is the conditional boundary of the bed, we have δin = 0 (i = 1, 2 and n = 2, 3), since
the solutions of (9), (10), and (15) coincide in conformity with the boundary conditions.

In the case where βm1 << βm2, the values of δ13 decrease noticeably compared to the previous case,
which indicates a good convergence between the solutions of the systems of equations (9), (10), and (15).
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However, here, too, the values of δ13 and δ23 are much larger than the values of δ12 and δ22. This means that
the system of equations (15) gives solutions more distant from those of the system of equations (9).

Next, we consider the case where the influence of λ2 is substantial. Just as above, when βm1 D βm2,
the quantities δin (i = 1, 2 and n = 3, 5) have larger values than δin (i = 1, 2 and n = 2, 4). This indicates a
poor convergence of the solutions of the systems of equations (15) and (31) to the solution of (9), whereas
the solutions of (10) and (30) have a comparatively better convergence. When βm1 << βm2, the values of δin

(i = 1, 2 and n = 3, 5) are substantially smaller than in the previous case, which means the improvement in
the convergence of Eqs. (15) and (31) to the solution of the system of equations (9). When t are large, the
solutions of (10) and (30) and (15) and (31) are close to each other. Considerable differences of δi2 from
δi4 and δi3 from δi5 (i = 1, 2) are observed for small times t. Consequently, for small t, when the influence
of λ2 is substantial, it is necessary to use the solutions of the system of equations (30) and (31), whereas the
use of the systems of equations (10) and (15) can lead to visible errors. Thus, it is established that in order
to calculate p1 and p2 under the known assumptions, it is possible to use system (10) instead of the general
system (9), but when βm1 << βm2, it is worthwhile to resort to system (15). When the parameter λ exerts a
considerable influence, systems (30) and (31) must be applied instead of systems (10) and (15).

The case of simultaneous action of the parameters λ1 and λ2 is also considered. Calculations were
performed for the following values: λ1 = 40, 100, and 150 sec and λ2 = 120 sec. The calculation results show
that in this case, too, the above-noted tendencies toward changing δin (i = 1, 2 and n = 2, 3, 4, 5) are re-
tained.

Fig. 1. Absolute errors δin (i =  1) for βm1 = 1.6⋅10−5 and βm2 =
2.5⋅10−5, MPa−1, t = 100 sec, λ1 = 40 sec (a), 100 (b), and 150 (c), λ2 =
120 sec.
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Taking account of λ1 and λ2 leads to a substantial retardation of the decrease in the pressures in the
systems of cracks and porous blocks that was noted earlier in [22].

Thus, using the simplified and "truncated" systems of equations of relaxation filtration in cracked-po-
rous media, one must take into account the range of convergence of their solutions to the solution of the
general system of equations.

It is easy to verify that for λ1 = λ2 = 0 systems (15) and (13) become a simplified system of Baren-
blatt and others [1, 2], while systems (10) and (30) become Warren–Root equations [3].

NOTATION

ki, penetrability; mi, porosity; m0i, porosity for p = p0; pi, pressure; vi, filtration rate; βfl, coefficient
of compressibility of the fluid; βmi, coefficient of compressibility of the medium; µ, fluid viscosity; λ1, re-
laxation time of the pressure gradient; θi, relaxation time of the filtration rate; ρ, fluid density; ∆, Laplace
operator; τ, lag time caused by the mass exchange between the cracks and the porous blocks; ∇ , Hamiltonian
operator. Subscript i = 1 corresponds to the cracks; subscript i = 2 corresponds to the porous blocks.
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